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ABSTRACT 
 
 With the sea ice cover in the Arctic Ocean declining, the more extensive areas of open water 
will foster more frequent storms, higher winds, and bigger waves.  These conditions can create copious 
amounts of sea spray.  We anticipate that structures placed in shallow water—wind turbines or drilling 
rigs, for instance—will, therefore, experience more episodes of freezing spray that will create hazards 
for both personnel on these structures and for the structures themselves.  Few observations, however, 
have been made of sea spray generation in high winds, above, say, 15–20 m/s; and no spray 
observations have been made in freezing temperatures.  Our objective is, thus, to observe the size 
distribution and rate of creation of spray droplets at air temperatures below freezing and in winds 
above 15 m/s—and, preferably, above 20 m/s. 
 
 Climatologically, Mt. Desert Rock, a small, well exposed island 24 miles into the Atlantic 
Ocean from Bar Harbor, Maine, provided just such conditions in January.  Andreas and collaborator 
Kathy Jones thus spent most of January 2013 observing sea spray and measuring relevant 
meteorological and ocean conditions on Mt. Desert Rock.  We are continuing our data analysis but did 
encounter frequent winds near 20 m/s and temperatures below freezing during our deployment. 
 
LONG-TERM GOALS 
 
 The goal of this project is to develop the capability to quantify both the concentration of sea 
spray over the open ocean and the severity of sea spray icing on fixed offshore structures.  We will use 
existing information on the relationship of the spray concentration distribution to wind speed (Lewis 
and Schwarz 2004; Andreas et al. 2010; Jones and Andreas 2012) to estimate the sea spray climatology 
in ice-free northern oceans from reanalysis data and the time-varying extent of the sea ice cover.  Our 
field campaigns will focus on measuring sea spray parameters and relevant meteorological conditions 
to characterize spray droplet distributions at high wind speeds and low temperatures.  Sea spray data at 
high wind speeds are sparse, and there are no measurements of the spray droplet concentration at air 
temperatures below freezing.  This effort directly addresses two of the focus areas in the core ONR 
Arctic program: 
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 Improving understanding of the physical environment and processes in the Arctic Ocean. 
 Developing integrated ocean-ice-wave-atmosphere Earth system models for improved 

predictions on time scales of days to months. 
 
OBJECTIVES 
 
 Our objectives are as follows: 

 Use reanalysis data to estimate spatially and temporally distributed sea spray concentrations 
over the northern oceans.  Such estimates are currently limited by the sparse information on sea 
spray at high wind speeds.  Adapt the Andreas et al. (2008, 2010, 2014) spray algorithms for 
high wind speeds and subfreezing temperatures. 

 Use these estimates of sea spray concentrations to characterize the icing risk for offshore 
structures in northern regions by adapting the heat balance calculation for freezing rain in Jones 
(1996) to saline droplets and by modifying the Finstad et al. (1988) collision efficiency 
algorithm to take into account the larger mass of saline droplets compared to freshwater 
droplets. 

 Determine the properties of sea spray in high wind speeds by making droplet concentration 
measurements on fixed offshore structures or at well exposed coastal sites at air temperatures 
below freezing. 

 Measure the density of ice accreted from sea spray on fixed structures and develop a 
relationship between spray ice density and weather parameters. 

 Use our sea spray measurements to revise the Jones and Andreas (2012) spray concentration 
distribution for high wind speeds; update our initial icing risk analysis. 

 Rapidly disseminate all data and metadata. 
 
APPROACH 
 
 This project is a collaboration between Andreas and Kathy Jones of the U.S. Army’s Cold 
Regions Research and Engineering Laboratory, who is funded under a separate award 
(N00014-12-MP-20085). 
 
 Our goal is to quantify the concentrations of wind-generated sea spray and the resulting spray 
icing on offshore structures, such as wind turbines and exploration, drilling, and production platforms.  
Our approach combines 1) simulating sea spray and icing from reanalysis data and data from moored 
buoys and coastal stations, 2) a field campaign to measure the quantity and size distribution of sea 
spray in high winds, 3) developing a spray concentration density function for high wind speeds, 4) 
estimating the spatial distribution of sea spray in all seasons, and 5) determining icing risk when the air 
temperature is below freezing in northern oceans. 
 
 In the field, we observed the spray size distribution with two techniques.  First, we manually 
exposed coated glass slides briefly to the spray and then used computer software to size droplets in 
photographs of the slides.  Figure 1 shows such spray droplets captured on Vaseline-coated slided. 
 
 Our second spray instrument was a cloud imaging probe, which we are borrowing from Chris 
Fairall of NOAA’s Earth System Research Laboratory.  This device consists of an optical array; it 
photographs and then automatically sizes droplets moving through the array.  It sizes droplets with 
diameters from 25 m up to 1.55 mm in 62 bins that are each 25 m wide. 
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Figure 1.  Typical 
saline droplets 
captured on 
Vaseline-coated 
glass slides.  This is 
an example of the 
data we collected on 
Mt. Desert Rock in 
January 2013. 

 
 
 To characterize the meteorological conditions in which we observed the spray and, thereby, to 
develop parameterizations for spray concentration, spray production rate, and icing rate, we also 
deployed a full suite of turbulence instruments.  These instruments provide mean wind speed, 
temperature, humidity, and pressure and the turbulent air-sea surface fluxes of momentum and sensible 
heat.  Figure 2 shows the locations of the cloud imaging probe and its associated sonic anemometer, 
the turbulence instruments, and where we collected spray on glass slides on Mt. Desert Rock. 
 
WORK COMPLETED 
 
 Most of this year’s work was analyzing the data collected on Mt. Desert Rock in January 2013.  
There are several types of data that Andreas has been dealing with.  One set is time series of pressure, 
wind speed and direction, air temperature, and relative humidity to characterize the spray sampling 
conditions on Mt. Desert Rock.  The second set is the spray counts and sizing data from the cloud 
imaging probe.  Both sets of instruments yielded a lot of data, and the analysis is ongoing. 
 
 A third set of data is Jones’s capturing of the spray droplets on glass slides as in Figure 1.  
Vaseline-coated slides are hydrophobic; spray droplets therefore have circular shapes when 
photographed from above (e.g., Johnson and Dettre 1969).  Our processing software is able to identify 
these droplets and to give us the radius of each droplet.  The issue, however, is that we need to know 
the radius of the droplet in air, not just on the glass slide.  We did a small lab study this year to deduce 
how the radius we measure on the glass slide is related to the radius of the droplet in air. 
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Figure 2.  Map of Mt. Desert Rock 
showing its shoreline at low and high 
tide, the structures on the island, and 
locations of our instruments during our 
January 2013 experiment.  The yellow 
oval is the lighthouse. 

 
 
 Although spray droplets captured on glass slides appear circular when photographed from 
above, they could, in fact, assume a variety of shapes in profile.  Figure 3 shows geometries that a 
small droplet may asume when resting on a surface.  Photos like Figure 1 give us only an apparent 
radius, rap, while we desire the radius r0 of the droplet suspended in air. 
 
 In Figure 3, we see that the radius of curvature of the droplet on the slide, r, is the same as rap 
for the three cases on the right; but for the second case from the left, rap < r.  Figure 3 also defines the 
height a of the droplet’s apex above the slide.  By knowing the ratio a/r, we can calculate the volume of 
the droplet as it rests on the slide, which is also its volume in air,   3

04 / 3 r . 

 
 Figure 4 shows the same droplets as in Figure 1, but here we have let the water in these droplets 
evaporate to leave only the salt particles shown in Figure 4.  By sizing these salt particles, associating 
each with its corresponding parent droplet in Figure 1, and knowing that the original salinity of these 
droplets was 34 psu, I was able to estimate that a/r = 1.33.  That is, on these Vaseline-coated slides, the 
spray droplets sit pretty high, as in the second example from the right in Figure 3. 
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Figure 3.  A spray droplet may take a variety of shapes while resting on a hydrophobic surface.  
The sketch defines the radius of curvature, r, and the height of the droplet’s apex above the 
surface, a. 
 
 
 Our conclusion from this analysis is, for the spray droplets that Jones collected and sized on 
Mt. Desert Rock, the radius r0 of spray droplets floating in air is 0.9rap—that is, 0.9 times the radius 
measured on the slides.  We will henceforth use this conversion to estimate the actual radii of the 
airborne spray droplets from the radii that Jones measured. 
 
 

Figure 4.  The saline 
droplets in Figure 1 
have been allowed 
to evaporate.  These 
are the salt particles 
that the droplets 
have left behind.  
We combined the 
sizing information 
from this figure and 
from Figure 1 to 
estimate the volume 
of the original 
droplet and, thus, its 
original radius, r0. 
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DELIVERABLES 
 
 This is a basic research project:  We are not building things.  Rather, our products are scientific 
knowledge that is generally disseminated in the scientific literature or at scientific conferences.  As 
such, we have made four conference presentations in the last year and have also published associated 
proceedings papers.  These are Andreas (2014), Andreas et al. (2014), and Jones and Andreas (2013a, 
2013b). 
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